International Rectifier

IRFR3607PbF IRFU3607PbF

Applications

- High Efficiency Synchronous Rectification in SMPS
- Uninterruptible Power Supply
- High Speed Power Switching
- Hard Switched and High Frequency Circuits

Benefits

- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dl/dt Capability

HEXFET® Power MOSFET

V _{DSS}	75V
R _{DS(on)} typ.	7.34m Ω
max.	9.0m $Ω$
I _D (Silicon Limited)	@A08
D (Package Limited)	56A

G	D	S
Gate	Drain	Source

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, VGS @ 10V (Silicon Limited)	80①	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	56①	Α
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Wire Bond Limited)	56	
I _{DM}	Pulsed Drain Current ②	310	
P _D @T _C = 25°C	Maximum Power Dissipation	140	W
	Linear Derating Factor	0.96	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery ④	27	V/ns
T _J	Operating Junction and	-55 to + 175	°C
T _{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 seconds	300	
	(1.6mm from case)		

Avalanche Characteristics

E _{AS (Thermally lin}	mited) Single Pulse Avalanche Energy ③	120	mJ
I _{AR}	Avalanche Current ②	46	Α
E _{AB}	Repetitive Avalanche Energy ®	14	mJ

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case ®		1.045	°C/W
$R_{\theta JA}$	Junction-to-Ambient ®		50	
$R_{\theta JA}$	Junction-to-Ambient (PCB Mount) ® ®		110	

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	75			٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.096		V/°C	Reference to 25°C, I _D = 5mA@
R _{DS(on)}	Static Drain-to-Source On-Resistance		7.34	9.0	mΩ	$V_{GS} = 10V, I_D = 46A$
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	٧	$V_{DS} = V_{GS}, I_D = 100 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			20	μΑ	$V_{DS} = 75V$, $V_{GS} = 0V$
			—	250		$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Forward Leakage			100	nΑ	$V_{GS} = 20V$
	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	170			S	$V_{DS} = 50V, I_{D} = 46A$
Q_g	Total Gate Charge		56	84	nC	$I_D = 46A$
Q_{gs}	Gate-to-Source Charge		13			$V_{DS} = 38V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		16			V _{GS} = 10V ⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		40			$I_D = 46A, V_{DS} = 0V, V_{GS} = 10V$
$R_{G(int)}$	Internal Gate Resistance		0.55		Ω	
$t_{d(on)}$	Turn-On Delay Time		16		ns	$V_{DD} = 49V$
t _r	Rise Time		110			$I_D = 46A$
$t_{d(off)}$	Turn-Off Delay Time		43			$R_G = 6.8\Omega$
t _f	Fall Time		96			V _{GS} = 10V ⑤
C _{iss}	Input Capacitance		3070		pF	$V_{GS} = 0V$
C _{oss}	Output Capacitance		280			$V_{DS} = 50V$
C_{rss}	Reverse Transfer Capacitance		130			f = 1.0MHz
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)®		380			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 60V $ ®
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related)®		610			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 60V $

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			80①	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			310		integral reverse
	(Body Diode) ②					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 46A, V_{GS} = 0V $ §
t _{rr}	Reverse Recovery Time		33	50	ns	$T_J = 25^{\circ}C$ $V_R = 64V$,
			39	59		$T_J = 125^{\circ}C$ $I_F = 46A$
Q _{rr}	Reverse Recovery Charge		32	48	nC	$T_J = 25^{\circ}C$ di/dt = 100A/ μ s \odot
			47	71		$T_J = 125^{\circ}C$
I _{RRM}	Reverse Recovery Current		1.9		Α	$T_J = 25^{\circ}C$
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- ① Calculated continuous current based on maximum allowable junction $\frac{\text{@ I}_{SD} \leq 46\text{A}, \text{ di/dt} \leq 1920\text{A/µs}, V_{DD} \leq V_{(BR)DSS}, T_{J} \leq 175^{\circ}\text{C}.}{\text{@ Calculated continuous current based on maximum allowable junction}}$ temperature. Bond wire current limit is 56A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- ② Repetitive rating; pulse width limited by max. junction
- $\cent{3}$ Limited by T_{Jmax} , starting $T_J = 25$ °C, L = 0.12mH $R_G = 25\Omega$, $I_{AS} = 46A$, $V_{GS} = 10V$. Part not recommended for use above this value.

- as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .
- O Coss eff. (ER) is a fixed capacitance that gives the same energy as $C_{oss}\, while \, V_{DS}\, is \, rising \, from \, 0$ to 80% $V_{DSS}.$
- ® When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.- SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- 6- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- &- DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

S	DIMENSIONS					
M B O	MILLIM	ETERS	INC	HES	O T E S	
L	MIN.	MAX.	MIN.	MAX.	E S	
Α	2.18	2.39	.086	.094		
A1	-	0.13	-	.005		
ь	0.64	0.89	.025	.035		
ь1	0.65	0.79	.025	.031	7	
b2	0.76	1,14	.030	.045		
ь3	4.95	5.46	.195	.215	4	
С	0.46	0.61	.018	.024		
c1	0.41	0.56	.016	.022	7	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	6	
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	.265	6	
E1	4.32	-	.170	-	4	
e	2.29	BSC	.090	BSC		
н	9.40	10.41	.370	.410		
L	1.40	1.78	.055	.070		
L1	2.74	BSC	.108	REF.		
L2	0.51	BSC	.020	BSC		
L3	0.89	1.27	.035	.050	4	
L4	-	1.02	-	.040		
L5	1.14	1.52	.045	.060	3	
ø	0.	10*	0.	10°		
ø1	0,	15°	0.	15*		
ø2	25*	35*	25*	35*		

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE

2.- DRAIN 3.- SOURCE

4.- DRAIN

IGBT & CoPAK

1.- GATE

2.- COLLECTOR

3.- EMITTER 4.- COLLECTOR

D-Pak (TO-252AA) Part Marking Information

EXAMPLE: THIS IS AN IRFR120 WITH ASSEMBLY

indicates "Lead-Free"

"P" in assembly line position indicates "Lead-Free" qualification to the consumer-level

D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

1. OUTLINE CONFORMS TO EIA-481.

Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market.

